# **Module 6: Equations and Formulas**

There are many, equations and formulas which come from a wide range of disciplines and often provide a mathematical solution to real-life problems. In this module we will practice using basic algebra to solve and rearrange simple formulas.

# SUBSTITUTING IN FORMULAS Exercise 1

1. The formula for simple interest (SI) is SI=Prt, where P is the principal amount invested, r is the interest rate per annum and t is the time period in years. Using this formula, find the missing amounts in the table below (round to the nearest cent):

| Principal | Simple interest<br><i>rate</i> per annum<br>(convert<br>percentages to<br>decimal) | Time Principal<br>amount is<br>invested<br>(convert to<br>years) | Calculate<br>simple interest | Calculate<br>principal amount<br>plus interest. |
|-----------|------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------|-------------------------------------------------|
| \$800     | 4%                                                                                 | 12 months                                                        | (a)                          | (b)                                             |
| \$3412    | 5.75%                                                                              | 9 months                                                         | (C)                          | (d)                                             |
| \$2100    | 6.4%                                                                               | 13 months                                                        | (e)                          | (f)                                             |

2. Use the following formula to find the value of z, when X = 102.3,  $\mu = 87.7$  and  $\sigma = 24.4$ .

$$z = \frac{X - \mu}{\sigma}$$

а

b

Use brackets around the numerator so that the numerator is calculated first. i.e.  $(102.3 - 87.7) \div 24.4 =$ **OR** Press "equals" after typing in the numerator. i.e.  $102.3 - 87.7 = \div 24.4 =$ Of these two computation methods, which do you prefer?

3. Use the Pythagorean equation,  $h = \sqrt{a^2 + b^2}$ , to find

the length of the side h, in the right-angle triangle pictured left.

4. The length of side a = 3 and side b = 4.

5. Use the following formula to find the value of z when;  $\overline{X}$  = 3.2,  $\mu$  = 3.0,  $\sigma$  = 0.8 and n = 10.

$$z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$$

NOTE: The numerator and denominator need to be calculated separately and then divided. One method is to use brackets around both numerator and denominator. i.e.  $(3.2-3) \div (.8 \div \sqrt{10}) =$ 

| Inverse<br>Operation | Numerical<br>Examples                 |
|----------------------|---------------------------------------|
| -                    | 2+7=9                                 |
| +                    | 2=9-7                                 |
| ÷                    | 3x4=12                                |
| X                    | 3=12÷4                                |
| $\sqrt{1}$           | 8 <sup>2</sup> =64                    |
| Square               | √ <mark>64</mark> =8                  |
|                      | Operation<br>-<br>+<br>÷<br>X<br>√III |

# **REARRANGING FORMULAS**

Sometimes it is convenient to change the "subject" of a formula. The formula V=kT gives the volume, V, of a fixed amount of gas at constant pressure, T is the temperature, and k is a constant. The subject of this formula is V.

**Worked examples** Let's say, we would like to rearrange the formula, V = kT, so that we:

i. V=<mark>k</mark>T

 $\frac{V}{T} = \frac{kT}{T}$ 

Make k the subject of the formula. Divide both sides of the equation by T.

The T's on the right hand side (RHS) of the equation cancel.

$$\frac{1}{r} = k$$
 or  $k = \frac{v}{T}$ 

$$V = K I$$
$$\frac{V}{k} = \frac{kT}{k}$$

ii.

Make T the subject of the formula.

Divide both sides of the equation by k.

The k's on the RHS of the equation cancel.

$$\frac{V}{k} = T$$
 or  $T = \frac{V}{k}$ 

iii. Let's try a different formula,  $V = \frac{k}{P}$  which gives the volume, V, of a fixed amount of gas at constant temperature, P is the pressure, and k is a constant.

 $V \times P = \frac{k}{R} \times P$  Multiply both side of the equation by P.

The P's on the RHS of the equation cancel.

VP = k or k = VP

#### Exercise 2

- 1. Ohm's Law is, **V** = **IR** it describes the relationship between the voltage, V, the current, I, and the resistance, R, of an electric circuit. Using algebra rearrange the formula so that **I** is the subject of the formula.
- Boyle's Law can be used to calculate changes in the volume or pressure of a fixed amount of gas at a constant temperature, the formula is: V<sub>1</sub>P<sub>1</sub>=V<sub>2</sub>P<sub>2</sub>. Rearrange V<sub>1</sub>P<sub>1</sub>=V<sub>2</sub>P<sub>2</sub> so that V<sub>2</sub>, is the subject of the formula. (Note:V<sub>1</sub>, P<sub>1</sub>, V<sub>2</sub> and P<sub>2</sub> are four single variables.)
- 3. Rearrange the following formula so that C is the subject of the formula, that is in the form C = .....  $A = \sqrt{B^2 + C}$ Step 1: To "reverse" the square root sign, square both sides of the equation.



Step 2: Next, subtract B<sup>2</sup> from both sides of the equation, to get C by itself.

4. Rearrange the following formula so that u is the subject of the formula, that is u = ?

$$v^2 = u^2 + 2as$$

Step 1: Subtract 2as from both sides of the equation, to get u<sup>2</sup> by itself.

Step 2: To 'reverse'  $u^2$  into u; take the square root of both sides of the equation.

## SOLVING EQUATIONS

## Exercise 3

- The following formula is called the 'ideal-gas equation'; it has 4 variables n, P, V and T and 1 constant R. **PV=nRT** For the given values of 3 variables, find the value of the 4<sup>th</sup>, in terms of the constant R.
  - a. V=5, n=1, T=200
  - b. P=2, n=3, T=250
  - c. P=3, V=6, n=5
  - d. P=1.5, V=4, T=270
- 2. The following formula has 5 variables v,  $d_{1,} d_{2}, t_{1}, t_{2}$ :  $v = \frac{d_2 d_1}{t_2 t_1}$

For each question below, calculate the value of the unknown variable, by substituting the known quantities into the formula and then rearranging the formula.

|       | V  | d <sub>1,</sub> | d <sub>2</sub> | t <sub>1</sub> | t <sub>2</sub> |
|-------|----|-----------------|----------------|----------------|----------------|
| (i)   | ?  | 20              | 40             | 0              | 1              |
| (ii)  | 60 | 10              | ?              | 0.5            | 1.5            |
| (iii) | 40 | ?               | 80             | 1              | 2.5            |
| (iv)  | 50 | 0               | 75             | ?              | 2              |
| (v)   | 90 | 20              | 200            | 0.25           | ?              |

#### WORD PROBLEM

#### Exercise 4

- 1. A box is to be constructed so that it has a square base and a volume of 1 cubic metre. If the height of the box is 1.2m, what is the size of the side of the base?
  - a. Sketch a 3D picture of the box, label the height, h, and the unknown sides of the base, x.
  - b. Volume of a box = area of base x height.
    Let V, represent the volume of the box. Write down the formula for the volume of this box.
  - c. Check the units are the same, and then substitute the known values for V and h. Solve the equation for x. Give your answer to the nearest centimetre.

#### ANSWERS TO EXERCISES

#### SUBSTITUTING IN FORMULAS

#### Exercise 1

| 1. | (a)\$32   | (b)\$832 | (C)   | \$147.14 | 2. | 0.60   |
|----|-----------|----------|-------|----------|----|--------|
|    | (d)\$355  | 9.14     | (e)\$ | 145.60   | 3. | 5      |
|    | (f)\$2245 | 5.60     |       |          | 4. | a) 0.8 |

# REARRANGING FORMULAS Exercise 2

- 1.  $I = \frac{V}{R}$ 2.  $V_{c} = \frac{V_{1}P_{1}}{V_{1}}$
- 2.  $V_2 = \frac{V_1 P_1}{P_2}$ 3.  $C = A^2 - B^2$
- 4.  $u = \sqrt{v^2 2as}$
- 4.  $u = \sqrt{v^2 2as}$

| SOLVING EQUATIONS |         |    |                                      |  |
|-------------------|---------|----|--------------------------------------|--|
| Exercise 3        |         | C. | 18=5RT                               |  |
| 1.                |         |    | $T = \frac{18}{5R}$                  |  |
| a.                | 5P=200R |    | 1- <u>5</u> R                        |  |
|                   | P=40R   | d. | 6=nR270                              |  |
| b.                | 2V=750R |    | -6 - 1                               |  |
|                   | V=375R  |    | $n = \frac{1}{270R} = \frac{1}{45R}$ |  |
|                   |         |    |                                      |  |

| 2.   |                                                                    | $2-t_1 = \frac{75}{50}$                                                 |
|------|--------------------------------------------------------------------|-------------------------------------------------------------------------|
| i.   | $v = \frac{40-20}{1-0} = \frac{20}{1} = 20$                        | $2^{-t_1} - \frac{50}{50}$<br>t_1=0.5                                   |
| ii.  | $60 = \frac{d_2 - 10}{1.5 - 0.5} = \frac{d_2 - 10}{1}$             | ι <sub>1</sub> –0.5                                                     |
|      | $60 = d_2 - 10$                                                    |                                                                         |
|      | d <sub>2</sub> = 70                                                | v. $90 = \frac{200-20}{t_2-0.25}$                                       |
| iii. | $40 = \frac{80 \cdot d_1}{2.5 \cdot 1} = \frac{80 \cdot d_1}{1.5}$ |                                                                         |
|      | 40×1.5=80-d <sub>1</sub>                                           | $90=\frac{180}{t_2-0.25}$                                               |
|      | $60 = 80 - d_1$                                                    | $90 \times (t_2 - 0.25) = \frac{180}{(t_2 - 0.25)} \times (t_2 - 0.25)$ |
|      | d <sub>1</sub> = 20                                                | $\frac{90}{(t_2-0.25)} - \frac{1}{(t_2-0.25)}$                          |
|      |                                                                    | 90×(t <sub>2</sub> -0.25)=180                                           |
|      | 75-0                                                               | $\frac{90(t_2 - 0.25)}{90} = \frac{180}{90}$                            |
| iv.  | $50 = \frac{75 - 0}{2 - t_1}$                                      | 90 90<br>t <sub>2</sub> - 0.25=2                                        |
|      | $50 \times (2 - t_1) = \frac{75}{(2 - t_1)} \times (2 - t_1)$      | $t_2 = 0.23 - 2$<br>$t_2 = 2.25$                                        |
|      | $\frac{30}{(2-t_1)} - \frac{30}{(2-t_4)}$                          | ų 2.20                                                                  |
|      | $\frac{50(2-t_1)}{50} = \frac{75}{50}$                             |                                                                         |
|      | 50 50                                                              |                                                                         |

#### WORD PROBLEM

#### **Exercise 4**

b. Volume of a rectangular prism = length x width x height

V=x<sup>2</sup>h

c. 1=x<sup>2</sup>1.2

 $1=1.2x^2$  (Divide both sides by 1.2)

$$\frac{1}{1.2} = \frac{1.2x^2}{1.2}$$

 $x^2 = \frac{1}{1.2}$  (Take the square root of both sides)

$$x = \sqrt{\frac{1}{1.2}} = \sqrt{0.83} \approx 0.91287 \text{m}$$

The side of the square base is 91 cm in length.