Module 6: Equations and Formulas

There are many, equations and formulas which come from a wide range of disciplines and often provide a mathematical solution to real-life problems. In this module we will practice using basic algebra to solve and rearrange simple formulas.

SUBSTITUTING IN FORMULAS

Exercise 1

1. The formula for simple interest (SI) is $\mathrm{SI}=\mathrm{Prt}$, where P is the principal amount invested, r is the interest rate per annum and t is the time period in years. Using this formula, find the missing amounts in the table below (round to the nearest cent):

Principal	Simple interest rate per annum (convert percentages to decimal)	Time Principal amount is invested (convert to years)	Calculate simple interest	Calculate principal amount plus interest.
$\$ 800$	4%	12 months	(a)	(b)
$\$ 3412$	5.75%	9 months	(c)	(d)
$\$ 2100$	6.4%	13 months	(e)	(f)

2. Use the following formula to find the value of z, when $X=102.3, \mu=87.7$ and $\sigma=24.4$.
$z=\frac{X-\mu}{\sigma}$
3. Use the Pythagorean equation, $h=\sqrt{a^{2}+b^{2}}$, to find

Use brackets around the numerator so that the numerator is calculated first. i.e. $(102.3-87.7) \div 24.4=$ OR
Press "equals" after typing in the numerator.
i.e. $102.3-87.7=\div 24.4=$

Of these two computation methods, which do you prefer?
 the length of the side h, in the right-angle triangle pictured left.
4. The length of side $a=3$ and side $b=4$.
5. Use the following formula to find the value of z when; $\bar{X}=3.2, \mu=3.0, \sigma=0.8$ and $n=10$.

$$
z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}
$$

NOTE: The numerator and denominator need to be calculated separately and then divided. One method is to use brackets around both numerator and denominator.
i.e. $(3.2-3) \div(.8 \div \sqrt{10})=$

Operation	Inverse Operation	Numerical Examples
+	-	$\begin{array}{r} 2+7=9 \\ 2=9-7 \end{array}$
-	+	
x	\div	$\begin{aligned} & 3 \times 4=12 \\ & 3=12 \div 4 \end{aligned}$
\div	\mathbf{x}	
Square	$\sqrt{\square}$	$\begin{aligned} & 8^{2}=64 \\ & \sqrt{64}=8 \end{aligned}$
$\sqrt{\ldots}$	Square	

REARRANGING FORMULAS

Sometimes it is convenient to change the 'subject" of a formula. The formula $V=k T$ gives the volume, V , of a fixed amount of gas at constant pressure, T is the temperature, and k is a constant. The subject of this formula is V .

Worked examples Let's say, we would like to rearrange the formula, $\mathrm{V}=\mathrm{kT}$, so that we:
i. $\quad V=k T \quad$ Make k the subject of the formula.
$\frac{V}{T}=\frac{k T}{F} \quad$ Divide both sides of the equation by T.
The T's on the right hand side (RHS) of the equation cancel.
$\frac{V}{T}=k$ or $\quad k=\frac{V}{T}$
ii. $\quad V=k T \quad$ Make T the subject of the formula.
$\frac{v}{k}=\frac{k T}{k} \quad$ Divide both sides of the equation by k.
The k's on the RHS of the equation cancel.
$\frac{\mathrm{V}}{\mathrm{k}}=\mathrm{T} \quad$ or $\quad \mathbf{T}=\frac{\mathbf{v}}{\mathbf{k}}$
iii. Let's try a different formula, $\quad V=\frac{k}{P}$ which gives the volume, V, of a fixed amount of gas at constant temperature, P is the pressure, and k is a constant.
$V=\frac{k}{P} \quad$ Make k the subject of the formula.
$V \times P=\frac{k}{P} \times P \quad$ Multiply both side of the equation by P.
The P's on the RHS of the equation cancel.
$V P=k$ or $\quad k=V P$

Exercise 2

1. Ohm's Law is, $\mathbf{V}=\mathbf{I R}$ it describes the relationship between the voltage, V , the current, I, and the resistance, R, of an electric circuit. Using algebra rearrange the formula so that I is the subject of the formula.
2. Boyle's Law can be used to calculate changes in the volume or pressure of a fixed amount of gas at a constant temperature, the formula is: $\mathbf{V}_{1} \mathbf{P}_{\mathbf{1}}=\mathbf{V}_{\mathbf{2}} \mathbf{P}_{\mathbf{2}}$.
Rearrange $\mathrm{V}_{1} \mathrm{P}_{1}=\mathrm{V}_{2} \mathrm{P}_{2}$ so that V_{2}, is the subject of the formula. (Note: $\mathrm{V}_{1}, \mathrm{P}_{1}$, V_{2} and P_{2} are four single variables.)
3. Rearrange the following formula so that C is the subject of the formula, that is in the form $C=$ \qquad

$$
A=\sqrt{B^{2}+C}
$$

Step 1: To 'reverse" the square root sign, square both sides of the equation.

Step 2: Next, subtract B^{2} from both sides of the equation, to get C by itself.
4. Rearrange the following formula so that u is the subject of the formula, that is $u=$?

$$
v^{2}=u^{2}+2 a s
$$

Step 1: Subtract 2as from both sides of the equation, to get u^{2} by itself.

Step 2: To "reverse" u^{2} into u; take the square root of both sides of the equation.

SOLVING EQUATIONS

Exercise 3

1. The following formula is called the 'ideal-gas equation'; it has 4 variables n, P, V and T and 1 constant R. $\mathbf{P V}=\mathbf{n R T} \quad$ For the given values of 3 variables, find the value of the $4^{\text {th }}$, in terms of the constant R.
a. $V=5, n=1, T=200$
b. $\mathrm{P}=2, \mathrm{n}=3, \mathrm{~T}=250$
c. $P=3, V=6, n=5$
d. $P=1.5, V=4, T=270$
2. The following formula has 5 variables $v, d_{1}, d_{2}, t_{1}, t_{2}: \quad v=\frac{d_{2}-d_{1}}{t_{2}-t_{1}}$

For each question below, calculate the value of the unknown variable, by substituting the known quantities into the formula and then rearranging the formula.

	v	$\mathrm{d}_{1,}$	$\mathrm{~d}_{2}$	t_{1}	t_{2}
(i)	$?$	20	40	0	1
(ii)	60	10	$?$	0.5	1.5
(iii)	40	$?$	80	1	2.5
(iv)	50	0	75	$?$	2
(v)	90	20	200	0.25	$?$

WORD PROBLEM

Exercise 4

1. A box is to be constructed so that it has a square base and a volume of 1 cubic metre. If the height of the box is 1.2 m , what is the size of the side of the base?
a. Sketch a 3D picture of the box, label the height, h, and the unknown sides of the base, x.
b. Volume of a box = area of base x height.

Let V , represent the volume of the box. Write down the formula for the volume of this box.
c. Check the units are the same, and then substitute the known values for V and h. Solve the equation for x. Give your answer to the nearest centimetre.

ANSWERS TO EXERCISES

SUBSTITUTING IN FORMULAS

Exercise 1

1. (a) $\$ 32$
(b) $\$ 832$
(c) $\$ 147.14$
2. 0.60
(d) $\$ 3559.14$
(e) $\$ 145.60$
3. 5
(f) $\$ 2245.60$
4. a) 0.8

REARRANGING FORMULAS

Exercise 2

1. $I=\frac{V}{R}$
2. $V_{2}=\frac{V_{1} P_{1}}{P_{2}}$
3. $\mathrm{C}=\mathrm{A}^{2}-\mathrm{B}^{2}$
4. $u=\sqrt{v^{2}-2 a s}$

SOLVING EQUATIONS

Exercise 3

1.

a. $\quad 5 P=200 R$
$\mathrm{P}=40 \mathrm{R}$
b. $\quad 2 \mathrm{~V}=750 \mathrm{R}$
$\mathrm{V}=375 \mathrm{R}$
c. $18=5 R T$
$\mathrm{T}=\frac{18}{5 \mathrm{R}}$
d. $6=n R 270$
$n=\frac{6}{270 R}=\frac{1}{45 R}$
2.
i. $\quad v=\frac{40-20}{1-0}=\frac{20}{1}=20$
ii. $\quad 60=\frac{d_{2}-10}{1.5-0.5}=\frac{d_{2}-10}{1}$
$60=d_{2}-10$
$\mathrm{d}_{2}=70$
iii. $\quad 40=\frac{80-\mathrm{d}_{1}}{2.5-1}=\frac{80-\mathrm{d}_{1}}{1.5}$
$40 \times 1.5=80-d_{1}$
$60=80-d_{1}$
$d_{1}=20$
iv. $\quad 50=\frac{75-0}{2-t_{1}}$
$50 \times\left(2-t_{1}\right)=\frac{75}{\left(2-t_{4}\right)} \times\left(2-t_{4}\right)$
$\frac{50\left(2-t_{1}\right)}{50}=\frac{75}{50}$

$$
\begin{aligned}
& 2-\mathrm{t}_{1}=\frac{75}{50} \\
& \mathrm{t}_{1}=0.5 \\
& \text { v. } \quad 90=\frac{200-20}{\mathrm{t}_{2}-0.25} \\
& 90=\frac{180}{\mathrm{t}_{2}-0.25} \\
& 90 \times\left(\mathrm{t}_{2}-0.25\right)=\frac{180}{\left(\mathrm{t}_{2}-0.25\right)} \times\left(\mathrm{t}_{2}-0.25\right) \\
& 90 \times\left(\mathrm{t}_{2}-0.25\right)=180 \\
& \frac{90\left(\mathrm{t}_{2}-0.25\right)}{90}=\frac{180}{90} \\
& \mathrm{t}_{2}-0.25=2 \\
& \mathrm{t}_{2}=2.25
\end{aligned}
$$

WORD PROBLEM

Exercise 4

b. Volume of a rectangular prism $=$ length x width x height

$$
V=x^{2} h
$$

c. $\quad 1=x^{2} 1.2$
$1=1.2 x^{2}$ (Divide both sides by 1.2)
$\frac{1}{1.2}=\frac{1.2 x^{2}}{1.2}$
$x^{2}=\frac{1}{1.2} \quad$ (Take the square root of both sides)
$x=\sqrt{\frac{1}{1.2}}=\sqrt{0.8 \dot{3}} \approx 0.91287 \mathrm{~m}$
The side of the square base is 91 cm in length.

